Multi-Document Summarization via Discriminative Summary Reranking

نویسندگان

  • Xiaojun Wan
  • Ziqiang Cao
  • Furu Wei
  • Sujian Li
  • Ming Zhou
چکیده

Existing multi-document summarization systems usually rely on a specific summarization model (i.e., a summarization method with a specific parameter setting) to extract summaries for different document sets with different topics. However, according to our quantitative analysis, none of the existing summarization models can always produce high-quality summaries for different document sets, and even a summarization model with good overall performance may produce low-quality summaries for some document sets. On the contrary, a baseline summarization model may produce high-quality summaries for some document sets. Based on the above observations, we treat the summaries produced by different summarization models as candidate summaries, and then explore discriminative reranking techniques to identify high-quality summaries from the candidates for difference document sets. We propose to extract a set of candidate summaries for each document set based on an ILP framework, and then leverage Ranking SVM for summary reranking. Various useful features have been developed for the reranking process, including word-level features, sentence-level features and summary-level features. Evaluation results on the benchmark DUC datasets validate the efficacy and robustness of our proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extractive summarization using a latent variable model

Extractive multi-document summarization is the task of choosing sentences from a set of documents to compose a summary text in response to a user query. We propose a generative approach to explicitly identify summary and non-summary topic distributions in the sentences of a given set of documents (i.e., document cluster). Using these approximate summary topic probabilities as latent output vari...

متن کامل

Multi-Document Summarization Using A* Search and Discriminative Learning

In this paper we address two key challenges for extractive multi-document summarization: the search problem of finding the best scoring summary and the training problem of learning the best model parameters. We propose an A* search algorithm to find the best extractive summary up to a given length, which is both optimal and efficient to run. Further, we propose a discriminative training algorit...

متن کامل

A survey on Automatic Text Summarization

Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...

متن کامل

Multi-document summarization using A* search and discriminative training

In this paper we address two key challenges for extractive multi-document summarization: the search problem of finding the best scoring summary and the training problem of learning the best model parameters. We propose an A* search algorithm to find the best extractive summary up to a given length, which is both optimal and efficient to run. Further, we propose a discriminative training algorit...

متن کامل

Improving summarization performance by sentence compression: a pilot study

In this paper we study the effectiveness of applying sentence compression on an extraction based multi-document summarization system. Our results show that pure syntactic-based compression does not improve system performance. Topic signature-based reranking of compressed sentences does not help much either. However reranking using an oracle showed a significant improvement remains possible.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1507.02062  شماره 

صفحات  -

تاریخ انتشار 2015